Spectroscopic Evidence for the Existence of a Stable Acidic Ortho-ester

By Peter Bladon and G. C. Forrest

(Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, C.1)

WHEN cis-3,4-dihydroxytetrahydrofuran (anhydroerythritol) was treated with an excess of trifluoroacetic anhydride for a limited time, a crystalline compound m.p. 118—120° (from acetone) was isolated. Analyses corresponded to a molecular formula $C_6H_7F_3O_4$, *i.e.*, a monotrifluoroacetate of the original diol. However, since a trifluoroacetate carbonyl stretching band was absent from the solid-state i.r. spectrum, we assign to it one of the cyclic ortho-ester structures (I).

The proton n.m.r. spectrum¹ of a freshly prepared solution in trideuteroacetonitrile showed a pattern which is characteristic of such a cyclic structure: a multiplet centred at τ 5.03 being due to the bridgehead protons H_c; a multiplet which (neglecting the coupling to the bridgehead protons)

approximated to an AB quartet due to the nonequivalent protons of the methylene groups: $H_{A} \tau$ 6.56; $H_{B} \tau$ 5.92; J_{AB} 11.8 c./sec. On standing, a second similar set of peaks appeared in the spectrum corresponding to the second isomer: $H_{c} \tau 4.87$; $H_{A} \tau 6.53$; $H_{B} \tau 6.01$; $J_{AB} 11.8$ c./sec. Equilibrium was reached after about 90 min., when the conversion into the second isomer was approximately 25% complete. We assign to the more stable initial compound and its isomer the structures (I; $R = CF_3$, R' = OH) and (I; R = OH, R' = CF_3) respectively. This assignment is consistent with the greater downfield shift of the bridgehead protons in the second isomer where the H_c-C and C-CF₃ bonds are in a trans-parallel arrangement, wherein the electron-attracting CF₃ group exerts a maximum effect on the protons H_c.

The fluorine n.m.r. spectrum¹ of the equilibrium mixture shows peaks at ϕ^* + 85.29, 84.43, and 74.80 of relative intensity 9.5:3.4:1. The first two peaks are due to the CF₃ fluorines in the major (I; $\overline{R} = CF_3$, R' = OH) and minor (I; R = OH, $R' = CF_3$) cyclic components respectively, while the chemical shift of the third peak shows² that it is due to a small amount of an open-chain normal trifluoroacetate. It appears therefore that in solution an equilibrium between the two cyclic structures (I) and the open-chain trifluoroacetate (II) is set up. I.r. spectra of a chloroform

solution confirmed the presence of a small amount of the compound (II): λ_{max} 1780 cm.⁻¹

Trialkyl ortho-esters are well known,3 but we believe that the compound (I; $R = CF_3$, R' = OH) is the first case of a dialkyl ortho-ester (acidic ortho-ester³) being isolated. The demonstration of the existence of the equilibrium between the cyclic and open-chain (II) structures provides **(I)** confirmation of the long-held view that such acidic ortho-esters are intermediates in the migration of acyl groups in vicinal hydroxy-esters.4 The unusual stability of the ortho-ester in the present case is due to the presence of the electron-withdrawing CF₃ group, and is paralleled by the stability towards hydrolysis of ketals derived from 1,1,1,trifluoroacetone.5

(Received, June 1st, 1966; Com. 369.)

¹ N.m.r. spectra were determined at 40.004 and 37.644 Mc./sec. for protons and fluorine respectively. The assignments in the proton spectra are based on comparisons with extensive series of spectra of cyclic and open-chain esters of anhydroerythritol: spectra of the two types are easily distinguished. Chemical shifts in fluorine spectra are referenced to internal trichlorofluoromethane and are expressed as ϕ^* -values (p.p.m.) (G.V.D. Tiers and G. Filipovich, J. Phys. Chem., 1959, 63, 761). ² S. L. Manatt, J. Amer. Chem. Soc., 1966, 88, 1323. ³ E. Pascu, Adv. Carbohydrate Chem., 1945, 1, 77.

⁴ R. K. Ness and H. G. Fletcher, J. Amer. Chem. Soc., 1956, 78, 4710; J. M. Sugihara, Adv. Carbohydrate Chem., 1953, 8, 1; R. U. Lemieux in "Molecular Rearrangements" Vol. 2, ed. P. de Mayo, Interscience, New York, 1964, p. 709.
⁵ E. T. Bourne, A. J. Huggard, M. Stacey, and J. C. Tatlow, J. Chem. Soc., 1960, 2716.